Bio
  
  
  
Paul Humrickhouse
  

Research Scientist in the Fusion Safety Program. Research areas include fusion systems analysis, thermal hydraulics and heat transfer, severe accident analysis, nuclear aerosols, dust explosions, granular materials, tritium permeation and transport, and beryllium handling and technology. Principal Investigator of the Experimental Chamber for Evaluation of Exploding Dust (ExCEED). INL representative in the IAEACoordinated Research Project (CRP) on Dust in Fusion Devices and the Fusion Energy Systems Studies (FESS)​ group. Coordinator for Task 3 (Activation Products Source Terms) of the IEA Implementing Agreement on the Environmental, Safety, and Economic Aspects of Fusion Power (IEAESEFP). PhD in Nuclear Engineering and Engineering Physics from the University of Wisconsin-Madison. Joined INL in 2006.

208-526-7496Email Contacthttps://fusionsafety.inl.gov/SiteCollectionImages/PaulHumrickhouse2.png
Masashi Shimada
  

Leading Principal Investigator at the Safety and Tritium Applied Research (STAR) facility at INL in support of the DOE Fusion Energy Science tritium and safety research. Principal  Investigator of the Tritium Plasma Experiment (TPE), Tritium Lead Lithium Eutectic (TLLE) experiment, and the Tritium Heat eXchanger experiment (THX). Conducts experiments and numerical modeling of hydrogen isotope permeation, especially tritium, and transport in materials for fusion applications as well as for the DOE Nuclear Energy (NE) Very High Temperature Reactor (VHTR) fission plant design. Serves as the Task 1 (In-Vessel Tritium Source Term) coordinator for the International Energy Agency (IEA) Implementing Agreement on the Environmental, Safety and Economic Aspects of Fusion Power (ESE-FP). PhD in Engineering Physics from the University of California-San Diego. Joined INL in 2007.​

208-533-4472Email Contacthttps://fusionsafety.inl.gov/SiteAssets/Bio%20Pics/Masa150.png
Robert Pawelko
  

​Scientist in the Fusion Safety Program. Investigates tritium permeation in high temperature alloys. Responsible for tritium accountability measurements and documentation and assists in general laboratory activities at the STAR lab. Knowledgeable in tritium accountancy and tritium measurement systems, quadrupole mass spectrometry, BET surface area measurements, elemental assay by prompt gamma neutron activation analysis, and radiation measurements and spectrometry. Supports tasks in hydrogen isotope transport in fusion relevant material studies, beryllium dust explosion studies, beryllium-steam reactivity studies, tritium recovery from irradiated beryllium research, waste characterization, getter applications, and radiation monitoring systems. B.S. in physics from Northeastern Illinois University. Worked at INL since 1989.​

208-533-4792Email Contact
Chase Taylor
  

​Experimental researcher with expertise in hydrogen retention, plasma material interactions, fusion technology, surface chemistry analysis techniques, vacuum systems. Research interests include tritium retention in neutron damaged refractory materials, techniques for measuring defect concentration, and tritium permeation. Principal researcher for STAR surface characterization equipment, including glow discharge optical emission spectroscopy (GD-OES), X-ray photoelectron spectroscopy (XPS), scanning Auger microprobe (SAM), positron annihilation spectroscopy (PAS), and thermal desorption spectroscopy (TDS). Operates the neutron irradiated material ion implantation experiment (NIMIIX) focusing on deuterium ion implantation. Conducts thermal desorption spectroscopy and positron annihilation spectroscopy. PhD in nuclear engineering from Purdue University. Joined INL in 2012.

208-533-4068Email Contacthttps://fusionsafety.inl.gov/SiteAssets/Bio%20Pics/Chase150.png
Tommy Fuerst
  

​Researcher specialized in hydrogen membrane technology, hydrogen transport and permeation, thin-film deposition, and surface analysis. Research interests include fusion fuel cycle technology such as tritium extraction from breeder blanket systems and superpermeable membranes for torus exhaust pumping and separation, multiphase mass transport, systems analysis, and tritium issues and mitigation in molten salt reactors. He joined INL in 2019 after completing his PhD in Chemical Engineering from the Colorado School of Mines and BS in Chemical Engineering from University of Colorado Boulder. When not researching tritium, he can be found in the local mountains rock climbing and skiing with his wife Meriel. ​

208-533-4399Email Contacthttps://fusionsafety.inl.gov/SiteAssets/Bio%20Pics/TFuerst%20150.png

​​​​​​​

​​

​​​